Preliminary communication

REACTIVITY OF THE TETRAHYDROBORATE COPPER(I) COMPLEXES [$(PR_3)_2Cu(\eta^2-BH_4)$] (R = Ph, Cy) TOWARD CO₂, COS, AND SCNPh

CLAUDIO BIANCHINI*, CARLO A. GHILARDI, ANDREA MELI, STEFANO MIDOLLINI and ANNABELLA ORLANDINI

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione del C.N.R., Via F.D. Guerrazzi, 27, 50132 Florence (Italy)

(Received July 22nd, 1983)

Summary

CO₂, COS, and SCNPh react under very mild conditions with the copper(I)tetrahydroborate complexes [(PR₃)₂Cu(η^2 -BH₄)] (R = Ph, Cy); CO₂ and COS give the complexes [(PR₃)₂Cu(η^2 -O₂CH)] and [(PR₃)₂Cu(η^2 -OSCH)] respectively, whereas SCNPh gives the η^2 -dithiocarbamate complexes [(PR₃)₂Cu-(η^2 -S₂CNHPh)]. Addition of PPh₃ under CO₂ to solutions of [(PPh₃)₂Cu-(η^2 -BH₄)] gives [(PPh₃)₃Cu(η^1 -O₂CH)] while addition of PPh₃ and NBu₄ClO₄ under CO₂ gives [(PPh₃)₃Cu(μ -O₂CH)Cu(PPh₃)₃]ClO₄.

We recently reported the facile reduction of CO_2 , COS, and CS_2 by the complex [(triphos)Cu(η^1 -BH₄)] [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane] to give metalloformate derivatives [1] (Scheme 1). These reactions are of interest for various reasons: (i) the copper(I)-tetrahydroborate complexes parallel metal hydrides in their reactivity towards CO_2 and related molecules

0022-328X/83/\$03.00 © 1983 Elsevier Sequoia S.A.

н

[2], and so could function as substitutes for copper hydrides, so far used only with a very few polynuclear species; (ii) metal formates have been suggested to be intermediates in a number of catalysis-related reactions, e.g., Fischer— Tropsch Synthesis, and the water gas shift reaction [3]; (iii) copper(I)-tetrahydroborate complexes could possibly be employed as selective reducing agents not only for organic synthesis [4] but also for organometallic synthesis.

In an effort to more fully explore these reactions as well as to extend their applicability, we are investigating the reactivity of different types of copper(I)-tetrahydroborate complexes toward heteroallenes of formula X=C=Y (X, Y = O, S, CR, NR₂). We now report the reactions of the complexes [(PPh₃)₂Cu- (η^2-BH_4)] (1) [5] and [(PCy₃)₂Cu(η^2-BH_4)] (2) with CO₂, COS, and SCNPh. Schemes 2 and 3 illustrate the reactions performed and the results obtained; IR spectral data and ¹H NMR data are listed in Table 1.

On bubbling CO_2 into a methylene chloride/ethanol solution of 1, white crystals of the complex $[(PPh_3)_2Cu(\eta^2 \cdot O_2CH)]$ (3) are formed. Identification of this product was based on spectroscopic, X-ray, and analytical data (the complex is identifical with an authentic specimen previously prepared [6a] and characterized by an X-ray study [6b]). Sneeden et al. have recently treated the hexameric copper hydride $[HCuPPh_3]_6$ with CO_2 to give 3 [7]. They also reported that on reaction of 1 with CO_2 a formate is formed, as evidenced by the fact that treatment of the reaction mixture with MeI affords HCOOMe. However, the authors do not suggest a formula for this formate.

Addition of 1 equiv. of PPh₃ under an atmosphere of CO₂ to the reaction mixture leading to 3 results in the formation of the monodentate formate complex [(PPh₃)₃Cu(η^1 -O₂CH)] (4) [6a]. Addition of PPh₃ together with NBu₄ClO₄ instead gives white crystals of the complex [(PPh₃)₃Cu(μ -O₂CH)Cu(PPh₃)₃] ClO₄ (5). Preliminary results of an X-ray structural analysis of 5 have been shown that in the complex cation two (PPh₃)₃Cu moieties are held together by a bridging formate group.

(7, R = Ph; yield 75%; 8, R = Cy; yield 65%)

(9, R = Ph; yield 80%;10, R = Cy; yield 75%)

SCHEME 3

TABLE 1

Compound	IR ^a				¹ H NMR ^b	
	ν(CO)	ν(CO…Cu)	v(CS…Cu)	other	δ(X ₂ CH)	δ(NH)
3	1585	1350			8.55	
4	1610	1340			9.00	
5	1585	1360			8.55	
6	1600	1330			8.60	
7	1632 1580	1340	800		10.12	
8	1630 1580	1350	805	3185 v(NH)	10.76	
9				1510, 1315 v(CN) 1000 v(CS)		9.05
10				3200 v(NH) 1510, 1315 v(CN) 1000 v(CS)		8.99

INFRARED AND ¹H NMR DATA FOR COMPOUNDS 3-10

^aKBr plates, samples mulled in Nujol. ^bCDCl₃ solutions at 293 K.

It is noteworthy that addition of $NaBH_4$ in ethanol to methylene chloride solutions of 3, 4, or 5 quantitatively regenerates the tetrahydroborate complex 1 together with sodium formate.

The novel η^2 -BH₄ complex 2 was synthesized by treatment of a methylene chloride solution of $[(PCy_3)_2Cu(ClO_4)]$ with NaBH₄ ($\nu(BH_t)$ 2360, 2260 cm⁻¹, $\nu(BH_b)$ 2015, 1910 cm⁻¹). Bubbling of CO₂ into a methylene chloride/ethanol solution of 2 gave white crystals of the formate complex $[(PCy_3)_2Cu(\eta^2-O_2CH)]$ (6).

Both compounds 1 and 2 react in methylene chloride with COS to give white crystals of $[(PPh_3)_2Cu(\eta^2-OSCH)]$ (7), and $[(PCy_3)_2Cu(\eta^2-OSCH)]$ (8), respec-

C30

tively. Carbonyl sulfide insertion into M—H bonds to give metallothioformate complexes is extremely rare, being limited to $[(CO)_5MSCO(H)]^-$ (M = Cr, Mo, W) [2], and to the above reported triphos complex. To our knowledge, this is the first example of an η^2 -O,S bonded thioformate ligand.

Organoisothiocyanates can react with metal hydrides to give either thioformamide [8] or dithiocarbamate complexes [9]. We have found that SNCPh reacts with methylene chloride solutions of 1 or 2 to give the η^2 -dithiocarbamate complexes [(PPh₃)Cu(η^2 -S₂CNHPh)] (9), and [(PCy₃)Cu(η^2 -S₂CNHPh)] (10), as yellow crystals, further confirming that phosphine-BH₄ copper(I) complexes can mimic metal hydrides in reactions with heteroallenes.

Current studies are underway to investigate both the reaction mechanisms and the reactivity of the formate complexes. Preliminary studies have shown that the η^2 -O₂CH complex 3 reacts with CS₂ to give the η^2 -thioformate complex 7.

Acknowledgement. This work was supported by a grant from the C.N.R. programme "Chimica Fine e Secondaria".

References

- 1 C. Bianchini, C.A. Ghilardi, A. Meli, S. Midollini and A. Orlandini, J. Organomet. Chem., 248 (1983) C13.
- 2 D.J. Darensbourg and A. Rokicki, Organometallics, 1 (1982) 1685 and refs. therein.
- 3 W.A.R. Slegeir, R.S. Sapienza, R. Rayford and L. Lam, Organometallics, 1 (1982) 1728.
- 4 T.N. Sorrell and P.S. Pealmon, J. Org. Chem., 45 (1980) 3440.
- 5 F. Cariati and L. Naldini, Gazz. Chim. Ital., 95 (1965) 3.
- 6 a) B. Hammond, F.H. Jardine and A.G. Vohra, J. Inorg. Nucl. Chem., 33 (1971) 1017; b) N. Marisch, A. Camus and G. Nardin, J. Organomet. Chem., 239 (1982) 429.
- 7 B. Beguin, B. Denise and P.A. Sneeden, J. Organomet. Chem., 208 (1981) C18.
- 8 S.D. Robinson and A. Sahajpal, Inorg. Chem., 16 (1977) 2722.
- 9 W. Bertleff and H. Werner, Chem. Ber., 115 (1982) 1012.